Understanding Disparities in Punishment: Regulator Preferences and Expertise

Karam Kang (Carnegie Mellon University) Bernardo Silveira (UCLA)

• Regulations often written flexibly so that regulators may punish similar violations differently

- Regulations often written flexibly so that regulators may punish similar violations differently
 - Pros: Regulators' information or expertise used for an efficient allocation of enforcement resources

- Regulations often written flexibly so that regulators may punish similar violations differently
 - Pros: Regulators' information or expertise used for an efficient allocation of enforcement resources
 - Cons: Regulators' private interests not representing public interests, possibly driven by capture, corruption, or lack of dedication

- Regulations often written flexibly so that regulators may punish similar violations differently
 - Pros: Regulators' information or expertise used for an efficient allocation of enforcement resources
 - Cons: Regulators' private interests not representing public interests, possibly driven by capture, corruption, or lack of dedication
- This paper presents a framework for evaluating regulatory discretion
 - Context: Enforcement of the Clean Water Act in California, focusing on wastewater treatment facilities (73% of violations)

Suppose, for the same violation, A pays a higher fine than B. Why?

• Larger external costs

- Larger external costs
- **2** Smaller enforcement costs

- 1 Larger external costs
- **2** Smaller enforcement costs
- Higher compliance cost

- 1 Larger external costs
- **2** Smaller enforcement costs
- Higher compliance cost
- Other violations

- Sources of penalty disparities:
 - ① Larger external costs
 - 2 Smaller enforcement costs
 - Higher compliance cost
 - Other violations

- Sources of penalty disparities:
 - ① Larger external costs
 - **2** Smaller enforcement costs
 - Higher compliance cost
 - **4** Other violations
- Q1: Do regulator preferences reflect local residents' preferences?

- Sources of penalty disparities:
 - ① Larger external costs
 - **2** Smaller enforcement costs
 - Higher compliance cost
 - **4** Other violations
- Q1: Do regulator preferences reflect local residents' preferences?
- **Q2**: To what extent does the variation in regulator preferences explain penalty disparities?

- Sources of penalty disparities:
 - Larger external costs
 - 2 Smaller enforcement costs
 - Higher compliance cost
 - **4** Other violations
- Q1: Do regulator preferences reflect local residents' preferences?
- **Q2**: To what extent does the variation in regulator preferences explain penalty disparities?

- Sources of penalty disparities:
 - 1 Larger external costs
 - 2 Smaller enforcement costs
 - Higher compliance cost
 - **4** Other violations
- Q1: Do regulator preferences reflect local residents' preferences?
- **Q2**: To what extent does the variation in regulator preferences explain penalty disparities?
- Q3: What if we limit regulatory discretion, by mandating a one-size-fits-all policy or a constant per-violation penalty?

 Document disparities in punishment using data linking each violation record to penalty

- Document disparities in punishment using data linking each violation record to penalty
- **2** Consider a law enforcement model (Mookherjee & Png, 1994)
 - Facilities privately informed about own compliance costs
 - Regulator sets *penalty schedule*, considering (a) compliance costs, (b) external/environmental costs, and (c) enforcement costs
 - Weights on these factors represent regulator preferences

- Document disparities in punishment using data linking each violation record to penalty
- **2** Consider a law enforcement model (Mookherjee & Png, 1994)
 - Facilities privately informed about own compliance costs
 - Regulator sets *penalty schedule*, considering (a) compliance costs, (b) external/environmental costs, and (c) enforcement costs
 - $-\,$ Weights on these factors represent regulator preferences
- **③** Provide conditions under which the model is identified

- Document disparities in punishment using data linking each violation record to penalty
- **2** Consider a law enforcement model (Mookherjee & Png, 1994)
 - Facilities privately informed about own compliance costs
 - Regulator sets *penalty schedule*, considering (a) compliance costs, (b) external/environmental costs, and (c) enforcement costs
 - $-\,$ Weights on these factors represent regulator preferences
- **③** Provide conditions under which the model is identified
- Istimate the model and conduct counterfactual analyses

Preview of Findings

Preview of Findings

- **1** Regulators tailor penalties to local residents' preferences
- Variation in regulator preferences is not the main driver of the observed penalty disparities

Preview of Findings

- **1** Regulators tailor penalties to local residents' preferences
- Variation in regulator preferences is not the main driver of the observed penalty disparities
- Limiting regulatory discretion would raise enforcement costs, and increase violations by facilities with relatively high benefits of compliance

Literature Review

- Empirical studies on bureaucrats/regulatory mechanisms: Cropper et al (1992), Leaver (2009), Agarwal, Lucca & Trebbi (2014), Kang & Miller (2017), Duflo, Greenstone, Pande & Ryan (2018), Blundell, Gowrisankaran & Langer (2019)
- Structural empirical analyses on regulation under asymmetric information: Wolak (1994), Thomas (1995), Timmins (2002), Gagnepain & Ivaldi (2002), Brocas, Chan & Perrigne (2006), Ryan (2012), Gagnepain, Ivaldi & Martimort (2013), Oliva (2015), Fowlie, Reguant and Ryan (2016), Lim & Yurukoglu (2018), Abito (forthcoming)

Today's Talk

- **1** Penalty disparities: Institution and evidence
- 2 Model of optimal regulation enforcement
- 3 Identification and estimation of the model
- **4** Estimation results and counterfactual analyses

Water Discharge Regulation

- Clean Water Act requires surface water dischargers to
 - Obtain permits specifying effluent limits
 - Periodically self-report effluents

Water Discharge Regulation

- Clean Water Act requires surface water dischargers to
 - Obtain permits specifying effluent limits
 - Periodically self-report effluents
- Enforcement actions mostly based on the self-reports
 - Frequent inspections encourage truthful self-reporting
 - Intentional misreporting punishable by criminal sanctions
 - Self-reported data to measure compliance (Magat & Viscuci, 1990; Earnhart, 2004; Shimshack & Ward, 2005; Gray & Shimshack, 2011)

Water Discharge Regulation

- Clean Water Act requires surface water dischargers to
 - Obtain permits specifying effluent limits
 - Periodically self-report effluents
- Enforcement actions mostly based on the self-reports
 - Frequent inspections encourage truthful self-reporting
 - Intentional misreporting punishable by criminal sanctions
 - Self-reported data to measure compliance (Magat & Viscuci, 1990; Earnhart, 2004; Shimshack & Ward, 2005; Gray & Shimshack, 2011)
- Wastewater treatment facilities: Violations often due to improper operation/maintenance (as opposed to capital investment)

Water Discharge Regulation in California

• State Water Resources Control Board oversees regulation

Water Discharge Regulation in California

- State Water Resources Control Board oversees regulation
- Regional water boards perform most enforcement
 - 7 board members serving 4-year terms, appointed by the governor and confirmed by the State Senate
 - Board members are part-time (employee/owner of a business, public servant, academic, retiree)
 - Staffs (mostly with science background) conduct day-to-day tasks
 - Board members make key decisions

Water Discharge Regulation in California

- State Water Resources Control Board oversees regulation
- Regional water boards perform most enforcement
 - 7 board members serving 4-year terms, appointed by the governor and confirmed by the State Senate
 - Board members are part-time (employee/owner of a business, public servant, academic, retiree)
 - Staffs (mostly with science background) conduct day-to-day tasks
 - Board members make key decisions
- Recent policy proposals to reduce the autonomy of the regional water boards

Regional Water Boards

- Divided by watersheds (not political boundaries)
- Water pollution problems are regional
- Local preferences differ:
 - Income, population density, political views
 - Industry composition and water use, water quality

Determination of Penalties

- When a violation is identified and confirmed
 - 1 Administrative civil liability (ACL) can be issued
 - **2** Violator may pay the liability or dispute the ACL
- Penalty amount in an ACL is based on
 - Initial amount based on the violation's extent/severity, sensitivity of the receiving water, harm to the beneficial water uses
 - Adjustments based on the violator's conduct and financial ability, etc.
 - Mandatory minimum penalty (MMP) for serious/chronic violations
 - Final modifications by the board members

Determination of Penalties

- When a violation is identified and confirmed
 - 1 Administrative civil liability (ACL) can be issued
 - **2** Violator may pay the liability or dispute the ACL
- Penalty amount in an ACL is based on
 - Initial amount based on the violation's extent/severity, sensitivity of the receiving water, harm to the beneficial water uses
 - Adjustments based on the violator's conduct and financial ability, etc.
 - Mandatory minimum penalty (MMP) for serious/chronic violations
 - Final modifications by the board members
- Discretion in defining and quantifying each factor

Data

- 228 domestic wastewater treatment facilities; 2000-2014
- Compliance and enforcement: California Integrated Water Quality System database (CIWQS)
- Wastewater treatment facility attributes: CIWQS and Clean Watersheds Needs Survey
- County-level attributes: American Community Survey (income), Census (population size; water use), California Irrigation Management Information System (weather), California Secretary of State (vote shares for propositions)
- Water pollution: STORET and National Water Information System

Determination of Penalties in the Data

• Unique data that links each violation record to its corresponding penalty

 $Log(Penalty_{vft} + 1) = \alpha Violation Attributes_{vft} + \beta Other Violations_{ft}$ $+ \gamma Facility & Local Attributes_{ft} + \phi_t + \epsilon_{vft}$

- Disparities in penalty: Variations in penalty *controlling for violation attributes*
 - $\beta \neq 0$? : Nonlinear penalty; Dynamic enforcement
 - $-\gamma \neq$ 0? : Regulator preferences; Compliance cost differences

Determination of Penalties in the Data

Dependent var: $Log(Penalty + 1)$	(1)	(2)	(3)
Any other current violations	0.599**	0.779***	0.817***
Any past violations (6 mo)	-0.068	0.012	0.430
Major facility		1.402***	0.692
Started in 1982-87		1.616**	1.267***
Started in 1988-		1.492	0.164
Special district		1.014**	0.817**
Irrigation water use $>67\%$			1.119*
Household income >\$57K			1.133*
Prop. approval >50%			1.015**
Violation attributes	Yes	Yes	Yes
Adjusted R^2	0.174	0.245	0.406

Notes: 15,827 violations. SE clustered at the facility level. *0.10,** 0.05,*** 0.01.

• Violation attributes: Priority and pollutants (this table); Emission amount, limit, period, and pollutant (appendix)
Determination of Penalties in the Data

Dependent var: $Log(Penalty + 1)$	(1)	(2)	(3)
Any other current violations	0.599**	0.779***	0.817***
Any past violations (6 mo)	-0.068	0.012	0.430
Major facility		1.402***	0.692
Started in 1982-87		1.616^{**}	1.267***
Started in 1988-		1.492	0.164
Special district		1.014^{**}	0.817^{**}
Irrigation water use $>67\%$			1.119^{*}
Household income >\$57K			1.133^{*}
Prop. approval >50%			1.015^{**}
Violation attributes	Yes	Yes	Yes
Adjusted R^2	0.174	0.245	0.406

Notes: 15,827 violations. SE clustered at the facility level. *0.10,** 0.05,*** 0.01.

- Nonlinear penalty (larger penalty with other concurrent violations)
- Static enforcement (past violations don't matter)

Determination of Penalties in the Data

Dependent var: $Log(Penalty + 1)$	(1)	(2)	(3)
Any other current violations Any past violations (6 mo)	0.599** -0.068	0.779*** 0.012	0.817 ^{***} 0.430
Major facility		1.402***	0.692
Started in 1982-87		1.616**	1.267***
Started in 1988-		1.492	0.164
Special district		1.014**	0.817**
Irrigation water use $>67\%$			1.119^{*}
Household income >\$57K			1.133*
Prop. approval $>50\%$			1.015**
Violation attributes	Yes	Yes	Yes
Adjusted R^2	0.174	0.245	0.406

Notes: 15,827 violations. SE clustered at the facility level. *0.10,** 0.05,*** 0.01.

• Controlling for violation attributes, major (large) facilities are penalized more; Why?

Determination of Penalties in the Data

Dependent var: $Log(Penalty + 1)$	(1)	(2)	(3)
Any other current violations	0.599**	0.779***	0.817***
Any past violations (6 mo)	-0.068	0.012	0.430
Major facility		1.402***	0.692
Started in 1982-87		1.616**	1.267***
Started in 1988-		1.492	0.164
Special district		1.014**	0.817**
Irrigation water use>67%			1.119^{*}
Household income >\$57K			1.133*
Prop. approval >50%			1.015**
Violation attributes	Yes	Yes	Yes
Adjusted R^2	0.174	0.245	0.406

Notes: 15,827 violations. SE clustered at the facility level. *0.10,** 0.05,*** 0.01.

• Not only facility attributes, but also local attributes matter; Why?

Revisit the Agenda

- 1 Penalty disparities: Institution and evidence
- 2 Model of optimal regulation enforcement
- 3 Identification and estimation of the model
- **4** Estimation results and counterfactual analyses

• Consider a regulator and a single regulated facility

- Consider a regulator and a single regulated facility
- Facility of type $heta \in (0, \overline{ heta})$ decides negligence level, $a \ge 0$
 - Determines the number of violations $k \sim Poisson(a)$
 - Benefits the facility by $\underbrace{\theta}_{facility \ type} \times \underbrace{b(a)}_{baseline}$
 - θ reflects issues with personnel/suppliers, incoming water, etc

- Consider a regulator and a single regulated facility
- Facility of type $heta \in (0,\overline{ heta})$ decides negligence level, $a \geq 0$
 - Determines the number of violations $k \sim Poisson(a)$
 - Benefits the facility by $\underbrace{\theta}_{facility \ type} \times \underbrace{b(a)}_{baseline}$

- $\,\theta$ reflects issues with personnel/suppliers, incoming water, etc

• Facility knows its type, but regulator only knows $\Theta \sim F(\cdot)$

- Consider a regulator and a single regulated facility
- Facility of type $heta \in (0,\overline{ heta})$ decides negligence level, $a \geq 0$
 - Determines the number of violations $k \sim Poisson(a)$
 - Benefits the facility by $\underbrace{\theta}_{facility \ type} \times \underbrace{b(a)}_{baseline}$

- $\,\theta$ reflects issues with personnel/suppliers, incoming water, etc

- Facility knows its type, but regulator only knows $\Theta \sim F(\cdot)$
- Regulator sets penalty schedule depending on k, $\bar{\epsilon}(k)$

- Expected penalty at negligence *a*: $e(a) \equiv \sum_{k \in \mathbb{N}} \overline{\epsilon}(k) \frac{a^k e^{-a}}{k!}$

```
Model: Setup (2/3)
```

• Facility takes penalty schedule as given, and maximizes payoff:

$$\max_{a} \ \theta b(a) - e(a)$$

Facility's FOC:

 $\theta b'(a) = e'(a)$

• Regulator minimizes *total* cost associated with enforcement:

$$\min_{e(\cdot)} \int_{0}^{\overline{\theta}} \left\{ \underbrace{-\theta b[a(\theta)]}_{compliance\ cost} + \underbrace{\gamma a(\theta)}_{environmental\ cost} + \underbrace{\psi e[a(\theta)]}_{enforcement\ cost} \right\} \underbrace{f(\theta)}_{type\ dist.} d\theta$$

subject to

- **1** Incentive compatibility: $a(\cdot)$ maximizes facility payoff under $e(\cdot)$
- 2 Limited liability: $e(\cdot)$ is less than maximal penalty
- **3** Nonnegative penalty: $e(\cdot) \ge 0$

Model: Equilibrium

- Proposition 1 characterizes equilibrium
 - Regulator's FOC:

$$b'[a(\theta)]\left(heta+rac{\psi[1-\mathcal{F}(heta)]}{(1-\psi)f(heta)}
ight)=rac{\gamma}{1-\psi}$$

- Under standard conditions, optimal $a(\cdot)$ is continuous and *strictly increasing* for any θ with $a(\theta) > 0$

Revisit the Agenda

- 1 Penalty disparities: Institution and evidence
- 2 Model of optimal regulation enforcement
- 3 Identification and estimation of the model
- Istimation results and counterfactual analyses

Identification Problem

Model Primitives	Observables
For each facility:	For each facility and period:
$F(\cdot)$: Distribution of types	Number of violations
$b(\cdot)$: Compliance cost	Penalty for each violation
γ and ψ	

Identification Problem

Model Primitives	Observables
For each facility:	For each facility and period:
$F(\cdot)$: Distribution of types	Number of violations
$b(\cdot)$: Compliance cost	Penalty for each violation
γ and ψ	

- Exogenous variation in penalties allows us to identify facilities' costs without relying on regulator optimality
- We exploit changes in enforcement practices in 2006:
 - Data system for electronic submittal/review of self-reports
 - Established the Office of Enforcement

Identification Problem

Model Primitives	Observables
For each facility:	For each facility and period:
$F(\cdot)$: Distribution of types	Number of violations
$b(\cdot)$: Compliance cost	Penalty for each violation
γ and ψ (pre & post 2006)	

- Exogenous variation in penalties allows us to identify facilities' costs without relying on regulator optimality
- We exploit changes in enforcement practices in 2006:
 - Data system for electronic submittal/review of self-reports
 - Established the Office of Enforcement
- Exclusion restriction: The 2006 changes affected (γ,ψ) only

Institutional Changes Led to Penalty Increases

Average Penalty per Violation

- Average penalty per *MMP violation* within 4 years of violation
- 2006 institutional changes affect violations from 2002 on

Based on the CWIQ database regarding all wastewater treatment facilities; $95\%~{\rm CI}$ in shaded area

Institutional Changes Led to Compliance Increases

Fraction of Facilities in Compliance

Based on the CWIQ database regarding all wastewater treatment facilities; 95% CI in shaded area

- Fraction of facilities without a MMP violation per year
- Compliance rate increase after 2006
- Facilities responded to penalty increase

Identification Strategy: Overview (1/2)

- Identify compliance cost function and type distribution $(b(\cdot), F(\cdot))$
 - Exploit facilities' responses to 2006 changes (D'Hautfoeuille & Février, *forthcoming*)
- Identify regulator preference weights (ψ_{pre} , ψ_{post} , γ_{pre} , γ_{post}) from regulator's FOC (Luo, Perrigne & Vuong, 2018)

Identification Strategy: Overview (2/2)

• Identification argument is for each facility: Suppose we have enough observations for any given facility to obtain

1 Distribution of its number of violations

2 Penalty as a function of its number of violations per period

Then all primitives can be identified for each facility

• In reality, our sample is not large enough: We estimate the primitives of the model *conditional on observed facility attributes*

Sketch of Identification Proof: Step 1

For each facility, identify the following equilibrium objects:

- Distributions of negligence level (a), pre/post 2006
 - Distribution of the number of violations (k) is observed
 - Distribution of *a* is identified from the distribution of *k* (Aryal, Perrigne & Vuong, 2019)
- **2** Penalty schedules, pre/post 2006
 - Penalty schedules as a function of the number of violations: Directly observed from the data
 - Penalty schedules as a function of negligence level (a): Calculated given the assumption that the number of violations (k) follows Poisson(a)

Sketch of Identification Proof: Step 2

Identify the equilibrium negligence functions evaluated at finite θ points:

• Start with $\theta_0 = 1$ and $a_{post}(\theta_0) = 1$ (normalization)

Solve for a_{pre}(θ₀): (i) a is strictly increasing, and (ii) F(·) and b(·) invariant:

$$a_{pre}(\theta_0) = G_{pre}^{-1}(G_{post}[a_{post}(\theta_0)])$$

* $G_{pre}(\cdot)$, $G_{post}(\cdot)$: CDF's of negligence level (a) (*identified in Step 1*)

3 Pick θ_1 so that $a_{post}(\theta_1) = a_{pre}(\theta_0)$ from the facility FOC, $\theta b'(a) = e'(a)$:

$$heta_1 = rac{e_{post}'[a_{pre}(heta_0)]}{e_{pre}'[a_{pre}(heta_0)]} heta_0$$

* $e_{pre}(\cdot)$, $e_{post}(\cdot)$: Penalty schedules (*identified in Step 1*)

Sketch of Identification Proof: Step 2 (Illustration)

Identify the equilibrium negligence functions evaluated at finite θ points:

Sketch of Identification Proof: Step 3

Identify cost type distribution, $F(\cdot)$, and marginal base compliance cost function, $b'(\cdot)$, evaluated at finite points:

- With two different regimes (pre and post 2006), we partially identify compliance costs by exploiting facilities' optimality
- $F(\theta_{\ell})$ from the monotonicity of $a(\cdot)$:

$$F(\theta_{\ell}) = G_{pre}[a_{pre}(\theta_{\ell})] = G_{post}[a_{post}(\theta_{\ell})]$$

* $G_{pre}(\cdot)$, $G_{post}(\cdot)$: CDF's of negligence level (a) (*identified in Step 1*)

• $b'[a_{pre}(\theta_{\ell})]$ and $b'[a_{post}(\theta_{\ell})]$ from the facility FOC:

$$\theta_{\ell} b'[a_{pre}(\theta_{\ell})] = e'[a_{pre}(\theta_{\ell})]$$

Sketch of Identification Proof: Step 4

Identify regulator preferences ($\psi_{pre}, \psi_{post}, \gamma_{pre}, \gamma_{post}$) and compliance costs

• Regulator preferences from the regulator FOC for j = pre, post:

$$b'[a_j(heta)]\left(heta+rac{\psi_j[1-F(heta)]}{(1-\psi_j)f(heta)}
ight)=rac{\gamma_j}{1-\psi_j}$$

- $(\theta_{\ell}, a_j(\theta_{\ell}), F(\theta_{\ell}), b'[a_j(\theta_{\ell})])'s identified from Steps 2 \& 3$
- Rewrite the FOC using the relationship between density and quantile function, i.e., f[Q(α)] = 1/Q'(α)
- Fully identify $F(\cdot)$ and $b'(\cdot)$ from regulator and facility FOC's

Multi-step Estimation

- Parametrically estimate (1) the distributions of violations and (2) the enforcement schedules, before and after the 2006 changes, as functions of facility and local attributes $(\mathbf{x}_{i,t})$
 - $\mathbf{x}_{i,t}$: Facility *i*'s age, size, treatment technology, capacity utilization, threat to water quality, county characteristics (income, population density, vote share for 2006 Proposition 84), water pollution, weather, and region dummies in period *t*
- **2** Estimate $\psi_{pre}(\mathbf{x})$, $\psi_{post}(\mathbf{x})$, $\gamma_{pre(\mathbf{x})}$, $\gamma_{post}(\mathbf{x})$, $b'(\cdot|\mathbf{x})$, and $F(\cdot|\mathbf{x})$ for any \mathbf{x} , without any further functional form assumptions, following the proof of the identification

Revisit the Agenda

- 1 Penalty disparities: Institution and evidence
- 2 Model of optimal regulation enforcement
- 3 Identification and estimation of the model
- **4** Estimation results and counterfactual analyses

Recall:

Recall:

• γ_{pre} is 47% higher for a facility in a high-income county

Recall:

- γ_{pre} is 47% higher for a facility in a high-income county
- ψ_{pre} is 29% lower for a facility in a high-income county

Recall:

- γ_{pre} is 47% higher for a facility in a high-income county
- $\psi_{\it pre}$ is 29% lower for a facility in a high-income county
- + $\psi_{\textit{pre}}$ is 13% lower for a facility in a county supporting the 2006 Proposition 84

To assess extent to which heterogeneity in regulator preferences explains disparities in penalties:

To assess extent to which heterogeneity in regulator preferences explains disparities in penalties:

• Consider a scenario where (γ, ψ) is identical across facilities

To assess extent to which heterogeneity in regulator preferences explains disparities in penalties:

- Consider a scenario where (γ, ψ) is identical across facilities
- Compare the dispersion of penalty schedules under the current and the alternative scenarios

To assess extent to which heterogeneity in regulator preferences explains disparities in penalties:

- Consider a scenario where (γ, ψ) is identical across facilities
- Compare the dispersion of penalty schedules under the current and the alternative scenarios
- Findings:
 - SD in the penalty stringency across the facilities: Decrease by 11%
 - 5th-95th percentile range in the expected penalties: Decrease by 16–28% (depending on the compliance level)

Limiting Regulatory Discretion (1/3)

- Key patterns in the data
 - 1 Penalty stringency vary with facility/local attributes
 - **2** Nonlinear (convex) penalty in violation frequency

Limiting Regulatory Discretion (1/3)

- Key patterns in the data
 - 1 Penalty stringency vary with facility/local attributes
 - **2** Nonlinear (convex) penalty in violation frequency
- What if regulators are mandated to set
Limiting Regulatory Discretion (1/3)

- Key patterns in the data
 - 1 Penalty stringency vary with facility/local attributes
 - **2** Nonlinear (convex) penalty in violation frequency
- What if regulators are mandated to set
 - **1** Same enforcement schedule to *all* facilities
 - In particular, we consider a schedule to minimize the sum of the total expected costs across all facilities

Limiting Regulatory Discretion (1/3)

- Key patterns in the data
 - 1 Penalty stringency vary with facility/local attributes
 - **2** Nonlinear (convex) penalty in violation frequency
- What if regulators are mandated to set
 - **1** Same enforcement schedule to *all* facilities
 - In particular, we consider a schedule to minimize the sum of the total expected costs across all facilities
 - **2** Linear penalty in violation frequency

• Uniform policy would be harsher to some facilities and more lenient to others: On average, total penalties increase by 1%

- Uniform policy would be harsher to some facilities and more lenient to others: On average, total penalties increase by 1%
- Hence, some facilities would violate more, and others less: On average, violation frequency decrease by 6%

- Uniform policy would be harsher to some facilities and more lenient to others: On average, total penalties increase by 1%
- Hence, some facilities would violate more, and others less: On average, violation frequency decrease by 6%
- Value of discretion: Tailored penalty schedule that achieve the same reduction of the average violation frequency would lower the total penalties by 2.5%, relative to the uniform policy
 - Consistent with Duflo, Greenstone, Pande and Ryan (2018)

- Uniform policy would be harsher to some facilities and more lenient to others: On average, total penalties increase by 1%
- Hence, some facilities would violate more, and others less: On average, violation frequency decrease by 6%
- Value of discretion: Tailored penalty schedule that achieve the same reduction of the average violation frequency would lower the total penalties by 2.5%, relative to the uniform policy
 - Consistent with Duflo, Greenstone, Pande and Ryan (2018)
- Who would violate more under the uniform policy? Large; posing a high threat to water quality; located in a high-income area

Limiting Regulatory Discretion: Linear Policy (3/3)

• Convex penalties imply larger penalties per violation to facilities with relatively high compliance costs

Limiting Regulatory Discretion: Linear Policy (3/3)

- Convex penalties imply larger penalties per violation to facilities with relatively high compliance costs
- High-cost facilities violate more, and others less

Limiting Regulatory Discretion: Linear Policy (3/3)

- Convex penalties imply larger penalties per violation to facilities with relatively high compliance costs
- High-cost facilities violate more, and others less
- Value of discretion: Linear penalty that achieve the same violation frequency as in the baseline scenario would raise penalties by 12%
 - Consistent with Blundell, Gowrisankaran and Langer (2019)

Discussion

- Policies that restrict regulatory discretion are sub-optimal because
 - Regulator cannot utilize her knowledge and expertise on facilities' compliance costs to efficiently allocate enforcement resources
 - $-\,$ Local residents' preferences may not be well-represented

Discussion

- Policies that restrict regulatory discretion are sub-optimal because
 - Regulator cannot utilize her knowledge and expertise on facilities' compliance costs to efficiently allocate enforcement resources
 - Local residents' preferences may not be well-represented
- But, with discretion, regulators may put forward their private interests (corruption, lack of dedication, etc.)

Discussion

- Policies that restrict regulatory discretion are sub-optimal because
 - Regulator cannot utilize her knowledge and expertise on facilities' compliance costs to efficiently allocate enforcement resources
 - Local residents' preferences may not be well-represented
- But, with discretion, regulators may put forward their private interests (corruption, lack of dedication, etc.)
- Without estimates on the social benefits of compliance, we provide an *upper* bound on the *excess* expected number of violations associated with regulators' private interests
 - Under a green regulator, violations would decrease by half with a 77% increase of penalties

Conclusion

- Provide an empirical framework to evaluate regulatory discretion
 - Consider an adverse selection model of regulation enforcement
 - Identify and estimate discharger costs and regulator preferences
 - Apply to California water quality regulation
- Regulator preferences vary across facilities, but
 - They reflect local residents' preferences
 - The variation in regulator preferences is not the main driver of penalty
- Limiting regulatory discretion raise enforcement costs and increase violations by facilities with relatively high benefits of compliance